×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2302.03999v2 Announce Type: replace
Abstract: We study three combinatorial models for the lower-triangular matrix with entries $t_{n,k} = \binom{n}{k} n^{n-k}$: two involving rooted trees on the vertex set $[n+1]$, and one involving partial functional digraphs on the vertex set $[n]$. We show that this matrix is totally positive and that the sequence of its row-generating polynomials is coefficientwise Hankel-totally positive. We then generalize to polynomials $t_{n,k}(y,z)$ that count improper and proper edges, and further to polynomials $t_{n,k}(y,\mathbf{\phi})$ in infinitely many indeterminates that give a weight $y$ to each improper edge and a weight $m! \, \phi_m$ for each vertex with $m$ proper children. We show that if the weight sequence $\mathbf{\phi}$ is Toeplitz-totally positive, then the two foregoing total-positivity results continue to hold. Our proofs use production matrices and exponential Riordan arrays.

Click here to read this post out
ID: 818449; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:33 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: