×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.01603v3 Announce Type: replace
Abstract: We employ a model based on nucleonic and mesonic degrees of freedom to discuss the competition between isotropic and anisotropic phases in cold and dense matter. Assuming isotropy, the model exhibits a chiral phase transition which is of second order in the chiral limit and becomes a crossover in the case of a realistic pion mass. This observation crucially depends on the presence of the nucleonic vacuum contribution. Allowing for an anisotropic phase in the form of a chiral density wave can disrupt the smooth crossover. We identify the regions in the parameter space of the model where a chiral density wave is energetically preferred. A high-density re-appearance of the chiral density wave with unphysical behavior, as seen in previous studies, is avoided by a suitable renormalization scheme. A nonzero pion mass tends to disfavor the anisotropic phase compared to the chiral limit and we find that, within our model, the chiral density wave is only realized for baryon densities of at least about 6 times nuclear saturation density.

Click here to read this post out
ID: 818729; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: