×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13154v1 Announce Type: new
Abstract: We explore the potential of the deep Ritz method to learn complex fracture processes such as quasistatic crack nucleation, propagation, kinking, branching, and coalescence within the unified variational framework of phase-field modeling of brittle fracture. We elucidate the challenges related to the neural-network-based approximation of the energy landscape, and the ability of an optimization approach to reach the correct energy minimum, and we discuss the choices in the construction and training of the neural network which prove to be critical to accurately and efficiently capture all the relevant fracture phenomena. The developed method is applied to several benchmark problems and the results are shown to be in qualitative and quantitative agreement with the finite element solution. The robustness of the approach is tested by using neural networks with different initializations.

Click here to read this post out
ID: 818748; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: