×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13210v1 Announce Type: new
Abstract: We report on experiments generating a magneto-optical trap (MOT) of 88-strontium ($^{88}$Sr) atoms at microkelvin temperature, using integrated-photonics devices. With metasurface optics integrated on a fused-silica substrate, we generate six-beam, circularly polarized, counter-propagating MOTs on the blue broad-line, 461 nm, and red narrow-line, 689 nm, Sr cooling transitions without bulk optics. By use of a diverging beam configuration, we create up to 10 mm diameter MOT beams at the trapping location. To frequency stabilize and linewidth narrow the cooling lasers, we use fiber-packaged, integrated nonlinear waveguides to spectrally broaden a frequency comb. The ultra-coherent supercontinuum of the waveguides covers 650 nm to 2500 nm, enabling phase locks of the cooling lasers to hertz level linewidth. Our work highlights the possibility to simplify the preparation of an ultracold 88Sr gas for an optical-lattice clock with photonic devices. By implementing a timing sequence for control of the MOT lasers and the quadrupole magnetic-field gradient, we collect atoms directly from a thermal beam into the blue MOT and continuously cool into a red MOT with dynamic detuning and intensity control. There, the red MOT temperature is as low as $2~{\mu}$K and the overall transfer efficiency up to 16%. We characterize this sequence, including an intermediate red MOT with modulated detuning. Our experiments demonstrate an integrated photonics system capable of cooling alkaline-earth gases to microkelvin temperature with sufficient transfer efficiencies for adoption in scalable optical clocks and quantum sensors.

Click here to read this post out
ID: 818752; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 14
CC:
No creative common's license
Comments: