×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13368v1 Announce Type: new
Abstract: The machine learning force field has achieved significant strides in accurately reproducing the potential energy surface with quantum chemical accuracy. However, it still faces significant challenges, e.g., extrapolating to uncharted chemical spaces, interpreting long-range electrostatics, and mapping complex macroscopic properties. To address these issues, we advocate for a synergistic integration of physical principles and machine learning techniques within the framework of a physically informed neural network (PINN). This innovative approach involves the incorporation of physical constraints directly into the parameters of the neural network, coupled with the implementation of a global optimization strategy. We choose the AMOEBA+ force field as the physics-based model for embedding, and then train and test it using the diethylene glycol dimethyl ether (DEGDME) dataset as a case study. The results reveal a significant breakthrough in constructing a precise and noise-robust machine learning force field. Utilizing two training sets with hundreds of samples, our model exhibits remarkable generalization and DFT accuracy in describing molecular interactions and enables a precise prediction of the macroscopic properties such as diffusion coefficient with minimal cost. This work provides a crucial insight into establishing a fundamental framework of PINN.

Click here to read this post out
ID: 818764; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: