×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13549v1 Announce Type: new
Abstract: We investigate the interference of high-order perfect optical vortex (POV) beams with different topological charges. Through numerical simulations, we reveal a remarkable phenomenon: keeping the beam width, and beam radius fixed while changing the topological charge, the splitting of the composite POV beam into two distinct individual perfect vortices occurs exactly at the same inter-axial separation. The observed interference pattern exhibits pronounced sensitivity to factors such as axial separation, phase shift, beam radius, and topological charges of the constituent beams. Notably, our findings are contrasted with the interference of high-order Laguerre-Gauss (LG) beams, highlighting that the splitting of composite vortices into their individual components is more rapid in the case of LG beams. Our research provides significant insights into the distinct interference properties of high-order POV beams, presenting potential applications in the fields of optical manipulation and communication systems.

Click here to read this post out
ID: 818778; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: