×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13783v1 Announce Type: new
Abstract: A theory of electron spin is developed here based on the extended least action principle and assumptions of intrinsic angular momentum of an electron with random orientations. By incorporating appropriate relative entropy for the random orientations of intrinsic angular momentum in the extended least action principle, the theory recovers the quantum formulation of electron spin. The two-level quantization of spin measurement is a natural mathematical consequence instead of a postulate. The formulation of measurement probability when a second Stern-Gerlach apparatus is rotated relative to the first Stern-Gerlach apparatus, and the Schr\"{o}dinger-Pauli equation, are also derived successfully. Furthermore, we provide an intuitive physical model and formulation to explain the entanglement phenomenon between two electron spins. In this model, spin entanglement is the consequence of correlation between the random orientations of the intrinsic angular momenta of the two electrons. Since the orientation is an intrinsic local property of electron, the correlation of orientations can be preserved even when the two electrons are remotely separated. Such a correlation can be manifested without causal effect. Owing to this orientation correlation, the Bell-CHSH inequality is shown to be violated in a Bell test. The standard quantum theory of electron spin can be considered as an ideal approximation of the present theory when certain conditions are taken to the limits. A potential experiment is proposed to test the difference between the present theory and the standard quantum theory. In a typical Bell test that confirms the violation of Bell-CHSH inequality, the theory suggests that by adding a sufficiently large time delay before Bob's measurement, the Bell-CHSH inequality can become non-violated.

Click here to read this post out
ID: 818790; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: