×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14258v1 Announce Type: cross
Abstract: Kohn-Sham Density Functional Theory (KS-DFT) provides the exact ground state energy and electron density of a molecule, contingent on the as-yet-unknown universal exchange-correlation (XC) functional. Recent research has demonstrated that neural networks can efficiently learn to represent approximations to that functional, offering accurate generalizations to molecules not present during the training process. With the latest advancements in quantum-enhanced machine learning (ML), evidence is growing that Quantum Neural Network (QNN) models may offer advantages in ML applications. In this work, we explore the use of QNNs for representing XC functionals, enhancing and comparing them to classical ML techniques. We present QNNs based on differentiable quantum circuits (DQCs) as quantum (hybrid) models for XC in KS-DFT, implemented across various architectures. We assess their performance on 1D and 3D systems. To that end, we expand existing differentiable KS-DFT frameworks and propose strategies for efficient training of such functionals, highlighting the importance of fractional orbital occupation for accurate results. Our best QNN-based XC functional yields energy profiles of the H$_2$ and planar H$_4$ molecules that deviate by no more than 1 mHa from the reference DMRG and FCI/6-31G results, respectively. Moreover, they reach chemical precision on a system, H$_2$H$_2$, not present in the training dataset, using only a few variational parameters. This work lays the foundation for the integration of quantum models in KS-DFT, thereby opening new avenues for expressing XC functionals in a differentiable way and facilitating computations of various properties.

Click here to read this post out
ID: 818858; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: