×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2112.02879v2 Announce Type: replace
Abstract: The ever-increasing amount of data from ubiquitous smart devices fosters data-centric and cognitive algorithms. Traditional digital computer systems have separate logic and memory units, resulting in a huge delay and energy cost for implementing these algorithms. Memristors are programmable resistors with a memory, providing a paradigm-shifting approach towards creating intelligent hardware systems to handle data-centric tasks. Spintronic nanodevices are promising choices as they are high-speed, low-power, highly scalable, robust, and capable of constructing dynamic complex systems. In this Review, we survey spintronic devices from a memristor point of view. We introduce spintronic memristors based on magnetic tunnel junctions, nanomagnet ensemble, domain walls, topological spin textures, and spin waves, which represent dramatically different state spaces. They can exhibit steady, oscillatory, stochastic, and chaotic trajectories in their state spaces, which have been exploited for in-memory logic, neuromorphic computing, stochastic and chaos computing. Finally, we discuss challenges and trends in realizing large-scale spintronic memristive systems for practical applications.

Click here to read this post out
ID: 818872; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: