×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13728v1 Announce Type: new
Abstract: When individuals interact in groups, the evolution of cooperation is traditionally modeled using the framework of public goods games. Overwhelmingly, these models assume that the return of the public good depends linearly on the fraction of contributors. In contrast, it seems natural that in real life public goods interactions the return most likely depends on the size of the investor pool as well. Here, we consider a model to account for such nonlinearities in which the multiplication factor (marginal per capita return) for the public good depends on how many contribute. We find that nonlinear public goods interactions can break the curse of dominant defection in linear public goods interactions and give rise to richer dynamical outcomes in evolutionary settings. We provide an in-depth analysis of the more varied decisions by the classical rational player in nonlinear public goods interactions as well as a mechanistic, microscopic derivation of the evolutionary outcomes for the stochastic dynamics in finite populations and in the deterministic limit of infinite populations. This kind of nonlinearity provides a natural way to model public goods with diminishing returns as well as economies of scale.

Click here to read this post out
ID: 818933; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: