×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2308.04956v2 Announce Type: replace-cross
Abstract: Due to the extremely low signal-to-noise ratio (SNR) and unknown poses (projection angles and image shifts) in cryo-electron microscopy (cryo-EM) experiments, reconstructing 3D volumes from 2D images is very challenging. In addition to these challenges, heterogeneous cryo-EM reconstruction requires conformational classification. In popular cryo-EM reconstruction algorithms, poses and conformation classification labels must be predicted for every input cryo-EM image, which can be computationally costly for large datasets. An emerging class of methods adopted the amortized inference approach. In these methods, only a subset of the input dataset is needed to train neural networks for the estimation of poses and conformations. Once trained, these neural networks can make pose/conformation predictions and 3D reconstructions at low cost for the entire dataset during inference. Unfortunately, when facing heterogeneous reconstruction tasks, it is hard for current amortized-inference-based methods to effectively estimate the conformational distribution and poses from entangled latent variables. Here, we propose a self-supervised variational autoencoder architecture called "HetACUMN" based on amortized inference. We employed an auxiliary conditional pose prediction task by inverting the order of encoder-decoder to explicitly enforce the disentanglement of conformation and pose predictions. Results on simulated datasets show that HetACUMN generated more accurate conformational classifications than other amortized or non-amortized methods. Furthermore, we show that HetACUMN is capable of performing heterogeneous 3D reconstructions of a real experimental dataset.

Click here to read this post out
ID: 818962; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: