×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13526v1 Announce Type: new
Abstract: Coherence is intrinsically related to projective measurement. When the fixed projective measurement involves higher-rank projectors, the coherence resource is referred to as block coherence, which comes from the superposition of orthogonal subspaces. Here, we establish a set of quantitative relations for the interconversion between block coherence and multipartite entanglement under the framework of the block-incoherent operations. It is found that the converted multipartite entanglement is upper bounded by the initial block coherence of single-party system. Moreover, the generated multipartite entanglement can be transferred to its subsystems and restored to block coherence of the initial single-party system by means of local block-incoherent operations and classical communication. In addition, when only the coarse-grained quantum operations are accessible for the ancillary subsystems, we further demonstrate that a lossless resource interconversion is still realizable. Our results provide a versatile approach to utilize different quantum resources in a cyclic fashion.

Click here to read this post out
ID: 819020; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 15
CC:
No creative common's license
Comments: