×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14102v1 Announce Type: new
Abstract: Quantum computers can be used for the solution of various problems of mathematical physics. In the present paper, we consider a discretized version of the heat equation and address its solution on quantum computer using variational Anzats tree approach (ATA). We extend this method originally proposed for the system of linear equations to tackle full time dependent heat equation. The key ingredients of our method are (i) special probabilistic quantum circuit in order to add heat sources to temperature distribution, (ii) limiting auxiliary register in the preparation of quantum state, (iii) utilizing a robust cluster of repetitive nodes in the anzats tree structure. We suggest that our procedure provides an exponential speedup compared to the classical algorithms in the case of time dependent heat equation.

Click here to read this post out
ID: 819044; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: