×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14173v1 Announce Type: new
Abstract: In this work, we address the central problem about how to effectively find the available precision limit of unknown parameters. In the framework of the quantum Ziv-Zakai bound (QZZB), we employ noiseless linear amplification (NLA)techniques to an initial coherent state (CS) as the probe state, and focus on whether the phase estimation performance is improved significantly in noisy scenarios, involving the photon-loss and phase-diffusion cases. More importantly, we also obtain two kinds of Heisenberg error limits of the QZZB with the NLA-based CS in these noisy scenarios, making comparisons with both the Margolus-Levitin (ML) type bound and the Mandelstam-Tamm (MT) type bound. Our analytical results show that in cases of photon loss and phase diffusion, the phase estimation performance of the QZZB can be improved remarkably by increasing the NLA gain factor. Particularly, the improvement is more pronounced with severe photon losses. Furthermore in minimal photon losses, our Heisenberg error limit shows better compactness than the cases of the ML-type and MT-type bounds. Our findings will provide an useful guidance for accomplishing more complex quantum information processing tasks.

Click here to read this post out
ID: 819046; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: