×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14194v1 Announce Type: new
Abstract: We study optimal quantum sensing of multiple physical parameters using repeated measurements. In this scenario, the Fisher information framework sets the fundamental limits on sensing performance, yet the optimal states and corresponding measurements that attain these limits remain to be discovered. To address this, we extend the Fisher information approach with a second optimality requirement for a sensor to provide unambiguous estimation of unknown parameters. We propose a systematic method integrating Fisher information and Bayesian approaches to quantum metrology to identify the combination of input states and measurements that satisfies both optimality criteria. Specifically, we frame the optimal sensing problem as an optimization of an asymptotic Bayesian cost function that can be efficiently solved numerically and, in many cases, analytically. We refer to the resulting optimal sensor as a `quantum compass' solution, which serves as a direct multiparameter counterpart to the Greenberger-Horne-Zeilinger state-based interferometer, renowned for achieving the Heisenberg limit in single-parameter metrology. We provide exact quantum compass solutions for paradigmatic multiparameter problem of sensing two and three parameters using an SU(2) sensor. Our metrological cost function opens avenues for quantum variational techniques to design low-depth quantum circuits approaching the optimal sensing performance in the many-repetition scenario. We demonstrate this by constructing simple quantum circuits that achieve the Heisenberg limit for vector field and 3D rotations estimation using a limited set of gates available on a trapped-ion platform. Our work introduces and optimizes sensors for a practical notion of optimality, keeping in mind the ultimate goal of quantum sensors to precisely estimate unknown parameters.

Click here to read this post out
ID: 819047; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: