×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14374v1 Announce Type: new
Abstract: We study temporal entanglement in dual-unitary Clifford circuits with probabilistic measurements preserving spatial unitarity. We exactly characterize the temporal entanglement barrier in the measurement-free regime, exhibiting ballistic growth and decay and a volume-law peak. In the presence of measurements, we show that the initial ballistic growth of temporal entanglement with bath size is modified to diffusive, which can be understood through a mapping to a persistent random walk model. The peak value of the temporal entanglement barrier exhibits volume-law scaling for all measurement rates. Additionally, measurements modify the ballistic decay to the ``perfect dephaser limit" with vanishing temporal entanglement to an exponential decay, which we describe through a spatial transfer matrix method. The spatial dynamics is shown to be described by a non-Hermitian hopping model, exhibiting a PT-breaking transition at a critical measurement rate $p=1/2$.

Click here to read this post out
ID: 819056; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: