×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13123v1 Announce Type: cross
Abstract: Gauge theories form the basis of our understanding of modern physics - ranging from the description of quarks and gluons to effective models in condensed matter physics. In the non-perturbative regime, gauge theories are conventionally treated discretely as lattice gauge theories. The resulting systems are evaluated with path-integral based Monte Carlo methods. These methods, however, can suffer from the sign problem and do not allow for a direct evaluation of real-time dynamics. In this work, we present a unified and comprehensive framework for gauged Gaussian Projected Entangled Pair States (PEPS), a variational ansatz based on tensor networks. We review the construction of Hamiltonian lattice gauge theories, explain their similarities with PEPS, and detail the construction of the state. The estimation of ground states is based on a variational Monte Carlo procedure with the PEPS as an ansatz state. This sign-problem-free ansatz can be efficiently evaluated in any dimension with arbitrary gauge groups, and can include dynamical fermionic matter, suggesting new options for the simulation of non-perturbative regimes of gauge theories, including QCD.

Click here to read this post out
ID: 819060; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: