×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13129v1 Announce Type: cross
Abstract: When subjected to quasiperiodic driving protocols, superconducting systems have been found to harbor robust time-quasiperiodic Majorana modes, extending the concept beyond static and Floquet systems. However, the presence of incommensurate driving frequencies results in dense energy spectra, rendering conventional methods of defining topological invariants based on band structure inadequate. In this work, we introduce a real-space topological invariant capable of identifying time-quasiperiodic Majoranas by leveraging the system's spectral localizer, which integrates information from both Hamiltonian and position operators. Drawing insights from non-Hermitian physics, we establish criteria for constructing the localizer and elucidate the robustness of this invariant in the presence of dense spectra. Our numerical simulations, focusing on a Kitaev chain driven by two incommensurate frequencies, validate the efficacy of our approach.

Click here to read this post out
ID: 819061; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: