×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13387v1 Announce Type: cross
Abstract: Photon-pair sources are critical building blocks for photonic quantum systems. Leveraging Kerr nonlinearity and cavity-enhanced spontaneous four-wave mixing, chip-scale photon-pair sources can be created using microresonators built on photonic integrated circuit. For practical applications, a high microresonator quality factor $Q$ is mandatory to magnify photon-pair sources' brightness and reduce their linewidth. The former is proportional to $Q^4$, while the latter is inversely proportional to $Q$. Here, we demonstrate an integrated, microresonator-based, narrow-band photon-pair source. The integrated microresonator, made of silicon nitride and fabricated using a standard CMOS foundry process, features ultralow loss down to $3$ dB/m and intrinsic $Q$ factor exceeding $10^7$. The photon-pair source has brightness of $1.17\times10^9$ Hz/mW$^2$/GHz and linewidth of $25.9$ MHz, both of which are record values for silicon-photonics-based quantum light source. It further enables a heralded single-photon source with heralded second-order correlation $g^{(2)}_\mathrm{h}(0)=0.0037(5)$, as well as a time-bin entanglement source with a raw visibility of $0.973(9)$. Our work evidences the global potential of ultralow-loss integrated photonics to create novel quantum light sources and circuits, catalyzing efficient, compact and robust interfaces to quantum communication and networks.

Click here to read this post out
ID: 819068; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: