×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14384v1 Announce Type: cross
Abstract: As quantum technology is advancing, the efficient design of quantum circuits has become an important area of research. This paper provides an introduction to the MCT quantum circuit design problem for reversible Boolean functions without assuming a prior background in quantum computing. While this is a well-studied problem, optimization models that minimize the true objective have only been explored recently. This paper introduces a new optimization model and symmetry-breaking constraints that improve solving time by up to two orders of magnitude compared to earlier work when a Constraint Programming solver is used. Experiments with up to seven qubits and using up to 15 quantum gates result in several new best-known circuits for well-known benchmarks. Finally, an extensive comparison with other approaches shows that optimization models may require more time but can provide superior circuits with optimality guarantees.

Click here to read this post out
ID: 819075; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: