×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2109.01380v3 Announce Type: replace
Abstract: Semi-quantum secret sharing (SQSS) protocols serve as fundamental frameworks in quantum secure multi-party computations, offering the advantage of not requiring all users to possess intricate quantum devices. However, the current landscape of SQSS protocols predominantly caters to bipartite scenarios, rendering them inadequate for practical multi-party secret sharing requirements. Addressing this gap, this paper proposes a novel SQSS protocol based on multi-particle GHZ states. In this protocol, the quantum user distributes predetermined secret information to multiple classical users with limited quantum capabilities, necessitating collaborative efforts among all classical users to reconstruct the correct secret information. By utilizing measure-flip and reflect operations, the transmitted multi-particle GHZ states can all contribute keys, thereby improving the utilization of transmitted particles. Security analysis shows that the protocol's resilience against prevalent external and internal threats. Additionally, employing IBM Qiskit, we conduct quantum circuit simulations to validate the protocol's accuracy and feasibility. Compared with similar studies, the proposed protocol has advantages in terms of protocol scalability, qubit efficiency, and shared message types.

Click here to read this post out
ID: 819078; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: