×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2211.06497v3 Announce Type: replace
Abstract: Motivated by quantum network applications over classical channels, we initiate the study of $n$-party resource states from which LOCC protocols can create EPR-pairs between any $k$ disjoint pairs of parties. We give constructions of such states where $k$ is not too far from the optimal $n/2$ while the individual parties need to hold only a constant number of qubits. In the special case when each party holds only one qubit, we describe a family of $n$-qubit states with $k$ proportional to $\log n$ based on Reed-Muller codes, as well as small numerically found examples for $k=2$ and $k=3$. We also prove some lower bounds, for example showing that if $k=n/2$ then the parties must have at least $\Omega(\log\log n)$ qubits each.

Click here to read this post out
ID: 819079; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: