×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2308.04744v2 Announce Type: replace
Abstract: The construction of a large-scale quantum internet requires quantum repeaters containing multiple entangled photon sources with identical wavelengths. Semiconductor quantum dots can generate entangled photon pairs deterministically with high fidelity. However, realizing wavelength-matched quantum-dot entangled photon sources faces two difficulties: the non-uniformity of emission wavelength and exciton fine-structure splitting induced fidelity reduction. Typically, these two factors are not independently tunable, making it challenging to achieve simultaneous improvement. In this work, we demonstrate wavelength-tunable entangled photon sources based on droplet-etched GaAs quantum dots through the combined use of AC and quantum-confined Stark effects. The emission wavelength can be tuned by ~1 meV while preserving an entanglement fidelity f exceeding 0.955(1) in the entire tuning range. Based on this hybrid tuning scheme, we finally demonstrate multiple wavelength-matched entangled photon sources with f>0.919(3), paving a way towards robust and scalable on-demand entangled photon sources for quantum internet and integrated quantum optical circuits.

Click here to read this post out
ID: 819096; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: