×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13177v1 Announce Type: new
Abstract: In early phase drug development of combination therapy, the primary objective is to preliminarily assess whether there is additive activity when a novel agent combined with an established monotherapy. Due to potential feasibility issues with a large randomized study, uncontrolled single-arm trials have been the mainstream approach in cancer clinical trials. However, such trials often present significant challenges in deciding whether to proceed to the next phase of development. A hybrid design, leveraging data from a completed historical clinical study of the monotherapy, offers a valuable option to enhance study efficiency and improve informed decision-making. Compared to traditional single-arm designs, the hybrid design may significantly enhance power by borrowing external information, enabling a more robust assessment of activity. The primary challenge of hybrid design lies in handling information borrowing. We introduce a Bayesian dynamic power prior (DPP) framework with three components of controlling amount of dynamic borrowing. The framework offers flexible study design options with explicit interpretation of borrowing, allowing customization according to specific needs. Furthermore, the posterior distribution in the proposed framework has a closed form, offering significant advantages in computational efficiency. The proposed framework's utility is demonstrated through simulations and a case study.

Click here to read this post out
ID: 819131; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: