×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13302v1 Announce Type: new
Abstract: Assume interest is in sampling from a probability distribution $\mu$ defined on $(\mathsf{Z},\mathscr{Z})$. We develop a framework to construct sampling algorithms taking full advantage of numerical integrators of ODEs, say $\psi\colon\mathsf{Z}\rightarrow\mathsf{Z}$ for one integration step, to explore $\mu$ efficiently and robustly. The popular Hybrid/Hamiltonian Monte Carlo (HMC) algorithm [Duane, 1987], [Neal, 2011] and its derivatives are example of such a use of numerical integrators. However we show how the potential of integrators can be exploited beyond current ideas and HMC sampling in order to take into account aspects of the geometry of the target distribution. A key idea is the notion of integrator snippet, a fragment of the orbit of an ODE numerical integrator $\psi$, and its associate probability distribution $\bar{\mu}$, which takes the form of a mixture of distributions derived from $\mu$ and $\psi$. Exploiting properties of mixtures we show how samples from $\bar{\mu}$ can be used to estimate expectations with respect to $\mu$. We focus here primarily on Sequential Monte Carlo (SMC) algorithms, but the approach can be used in the context of Markov chain Monte Carlo algorithms as discussed at the end of the manuscript. We illustrate performance of these new algorithms through numerical experimentation and provide preliminary theoretical results supporting observed performance.

Click here to read this post out
ID: 819138; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: