×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13731v1 Announce Type: new
Abstract: The training-conditional coverage performance of the conformal prediction is known to be empirically sound. Recently, there have been efforts to support this observation with theoretical guarantees. The training-conditional coverage bounds for jackknife+ and full-conformal prediction regions have been established via the notion of $(m,n)$-stability by Liang and Barber~[2023]. Although this notion is weaker than uniform stability, it is not clear how to evaluate it for practical models. In this paper, we study the training-conditional coverage bounds of full-conformal, jackknife+, and CV+ prediction regions from a uniform stability perspective which is known to hold for empirical risk minimization over reproducing kernel Hilbert spaces with convex regularization. We derive coverage bounds for finite-dimensional models by a concentration argument for the (estimated) predictor function, and compare the bounds with existing ones under ridge regression.

Click here to read this post out
ID: 819150; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: