×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.13960v1 Announce Type: new
Abstract: Double robustness (DR) is a widely-used property of estimators that provides protection against model misspecification and slow convergence of nuisance functions. While DR is a global property on the probability distribution manifold, it often coincides with influence curves, which only ensure orthogonality to nuisance directions locally. This apparent discrepancy raises fundamental questions about the theoretical underpinnings of DR.
In this short communication, we address two key questions: (1) Why do influence curves frequently imply DR "for free"? (2) Under what conditions do DR estimators exist for a given statistical model and parameterization? Using tools from semiparametric theory, we show that convexity is the crucial property that enables influence curves to imply DR. We then derive necessary and sufficient conditions for the existence of DR estimators under a mean squared differentiable path-connected parameterization.
Our main contribution also lies in the novel geometric interpretation of DR using information geometry. By leveraging concepts such as parallel transport, m-flatness, and m-curvature freeness, we characterize DR in terms of invariance along submanifolds. This geometric perspective deepens the understanding of when and why DR estimators exist.
The results not only resolve apparent mysteries surrounding DR but also have practical implications for the construction and analysis of DR estimators. The geometric insights open up new connections and directions for future research. Our findings aim to solidify the theoretical foundations of a fundamental concept and contribute to the broader understanding of robust estimation in statistics.

Click here to read this post out
ID: 819157; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:34 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: