×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.07454v3 Announce Type: replace-cross
Abstract: An acyclic causal structure can be described using a directed acyclic graph (DAG) with arrows indicating causation. The task of learning these structures from data is known as ``causal discovery''. Diverse populations or changing environments can sometimes give rise to heterogeneous data. This heterogeneity can be thought of as a mixture model with multiple ``sources'', each exerting their own distinct signature on the observed variables. From this perspective, the source is a latent common cause for every observed variable. While some methods for causal discovery are able to work around unobserved confounding in special cases, the only known ways to deal with a global confounder (such as a latent class) involve parametric assumptions. These assumptions are restrictive, especially for discrete variables. By focusing on discrete observables, we demonstrate that globally confounded causal structures can still be identifiable without parametric assumptions, so long as the number of latent classes remains small relative to the size and sparsity of the underlying DAG.

Click here to read this post out
ID: 819242; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:35 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: