×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2312.16143v2 Announce Type: replace-cross
Abstract: This article examines the implicit regularization effect of Stochastic Gradient Descent (SGD). We consider the case of SGD without replacement, the variant typically used to optimize large-scale neural networks. We analyze this algorithm in a more realistic regime than typically considered in theoretical works on SGD, as, e.g., we allow the product of the learning rate and Hessian to be $O(1)$ and we do not specify any model architecture, learning task, or loss (objective) function. Our core theoretical result is that optimizing with SGD without replacement is locally equivalent to making an additional step on a novel regularizer. This implies that the expected trajectories of SGD without replacement can be decoupled in (i) following SGD with replacement (in which batches are sampled i.i.d.) along the directions of high curvature, and (ii) regularizing the trace of the noise covariance along the flat ones. As a consequence, SGD without replacement travels flat areas and may escape saddles significantly faster than SGD with replacement. On several vision tasks, the novel regularizer penalizes a weighted trace of the Fisher Matrix, thus encouraging sparsity in the spectrum of the Hessian of the loss in line with empirical observations from prior work. We also propose an explanation for why SGD does not train at the edge of stability (as opposed to GD).

Click here to read this post out
ID: 819245; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 23, 2024, 7:35 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: