×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14487v1 Announce Type: new
Abstract: Strong gravitational lenses are a singular probe of the universe's small-scale structure $\unicode{x2013}$ they are sensitive to the gravitational effects of low-mass $(<10^{10} M_\odot)$ halos even without a luminous counterpart. Recent strong-lensing analyses of dark matter structure rely on simulation-based inference (SBI). Modern SBI methods, which leverage neural networks as density estimators, have shown promise in extracting the halo-population signal. However, it is unclear whether the constraining power of these models has been limited by the methodology or the information content of the data. In this study, we introduce an accelerator-optimized simulation pipeline that can generate lens images with realistic subhalo populations in a matter of milliseconds. Leveraging this simulator, we identify the main methodological limitation of our fiducial SBI analysis: training set size. We then adopt a sequential neural posterior estimation (SNPE) approach, allowing us to iteratively refine the distribution of simulated training images to better align with the observed data. Using only one-fifth as many mock Hubble Space Telescope (HST) images, SNPE matches the constraints on the low-mass halo population produced by our best non-sequential model. Our experiments suggest that an over three order-of-magnitude increase in training set size and GPU hours would be required to achieve an equivalent result without sequential methods. While the full potential of the existing strong lens sample remains to be explored, the notable improvement in constraining power enabled by our sequential approach highlights that the current constraints are limited primarily by methodology and not the data itself. Moreover, our results emphasize the need to treat training set generation and model optimization as interconnected stages of any cosmological analysis using simulation-based inference techniques.

Click here to read this post out
ID: 819480; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: