×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14504v1 Announce Type: new
Abstract: We examine the evolution of the disk surrounding the Be star in the highly eccentric binary system $\delta$ Scorpii over its three most recent periastron passages. $V$-band and $B-V$ photometry, along with H$\alpha$ spectroscopy are combined with a new set of extensive multi-band polarimetry data to produce a detailed comparison of the disk's physical conditions during the time periods surrounding each closest approach of the secondary star. We use the three-dimensional Monte Carlo radiative transfer code \textsc{HDUST} and smoothed particle hydrodynamics (\textsc{SPH}) code to support our observations with models of disk evolution, discussing the behaviour of the H$\alpha$ and He\,\textsc{i} 6678 lines, $V$-band magnitude, and polarization degree. We compare the characteristics of the disk immediately before each periastron passage to create a baseline for the unperturbed disk. We find that the extent of the H$\alpha$ emitting region increased between each periastron passage, and that transient asymmetries in the disk become more pronounced with each successive encounter. Asymmetries of the H$\alpha$ and He\,\textsc{i} 6678 lines in 2011 indicate that perturbations propagate inward through the disk near periastron. When the disk's direction of orbit is opposite to that of the secondary, the parameters used in our models do not produce spiral density enhancements in the H$\alpha$ emitting region because the tidal interaction time is short due to the relative velocities of the disk particles with the secondary. The effects of the secondary star on the disk are short-lived and the disk shows independent evolution between each periastron event.

Click here to read this post out
ID: 819491; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:30 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: