×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14645v1 Announce Type: new
Abstract: We propose to implement tunable higher-order topological states in a heterojunction consisting of a two-dimensional (2D) topological insulator and the recently discovered altermagnets, whose unique spin-polarization in both real and reciprocal space and null magnetization are in contrast to conventional ferromagnets and antiferromagnets. Based on symmetry analysis and effective edge theory, we show that the special spin splitting in altermagnets with different symmetries, such as $d$-wave, can introduce Dirac mass terms with opposite signs on the adjacent boundaries of the topological insulator, resulting in the higher-order topological state with mass-domain bound corner states. Moreover, by adjusting the direction of the N\'{e}el vector, we can manipulate such topological corner states by moving their positions. By first-principles calculations, taking a 2D topological insulator bismuthene with a square lattice on an altermagnet MnF$_2$ as an example, we demonstrate the feasibility of creating and manipulating the higher-order topological states through altermagnets. Finally, we discuss the experimental implementation and detection of the tunable topological corner states, as well as the potential non-Abelian braiding of the Dirac corner fermions.

Click here to read this post out
ID: 819590; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: