×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.02347v2 Announce Type: replace-cross
Abstract: We investigate finite-temperature observables in three-dimensional large $N$ critical vector models taking into account the effects suppressed by $1\over N$. Such subleading contributions are captured by the fluctuations of the Hubbard-Stratonovich auxiliary field which need to be handled with care due to a subtle divergence structure which we clarify. The examples we consider include the scalar $O(N)$ model, the Gross-Neveu model, the Nambu-Jona-Lasinio model and the massless Chern-Simons Quantum Electrodynamics. We present explicit results for the free energy density to the subleading order in $1\over N$, which captures the thermal one-point function of the stress-energy tensor to this order. We also include the dependence on a chemical potential. We determine the Wilson coefficient in the thermal effective action that is sensitive to global symmetry for the first time directly in interacting CFTs, which produces a symmetry-resolved asymptotic density of states. We further provide a formula from diagrammatics for the one-point functions of general single-trace higher-spin currents. We observe that in most cases considered, these subleading effects lift the apparent degeneracies between observables in different models at infinite $N$, while in special cases the discrepancies only start to appear at the next-to-subleading order.

Click here to read this post out
ID: 819706; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: