×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2310.11351v2 Announce Type: replace-cross
Abstract: The competition between unitary time-evolution and quantum measurements could induce phase transitions in the entanglement characteristics of quantum many-body dynamics. In this work, we reveal such entanglement transitions in the context of non-Hermitian Floquet systems. Focusing on noninteracting fermions in a representative bipartite lattice with balanced gain/loss and under time-periodic quenches, we uncover rich patterns of entanglement transitions due to the interplay between driving and non-Hermitian effects. Specially, we find that the monotonic increase of quenched hopping amplitude could flip the system between volume-law and area-law entangled Floquet phases, yielding alternated entanglement transitions. Meanwhile, the raise of gain/loss strength could trigger area-law to volume-law reentrant transitions in the scaling behavior of steady-state entanglement entropy, which are abnormal and highly unexpected in non-driven systems. Connections between entanglement transitions and parity-time-reversal (PT) transitions in Floquet spectra are further established. Our findings not only build a foundation for exploring entanglement phase transitions in Floquet non-Hermitian setups, but also provide efficient means to engineer and control such transitions by driving fields.

Click here to read this post out
ID: 819707; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: