×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14419v1 Announce Type: new
Abstract: Large language models (LLMs) achieved great success in multiple application domains and attracted huge attention from different research communities recently. Unfortunately, even for the best LLM, there still exist many faults that LLM cannot correctly predict. Such faults will harm the usability of LLMs. How to quickly reveal them in LLMs is important, but challenging. The reasons are twofold, 1) the heavy labeling effort for preparing the test data, and 2) accessing closed-source LLMs such as GPT4 is money-required. To handle this problem, in the traditional deep learning testing field, test selection methods have been proposed for efficiently testing deep learning models by prioritizing faults. However, the usefulness of these methods on LLMs is unclear and under exploration. In this paper, we first study the effectiveness of existing fault detection methods for LLMs. Experimental results on four different tasks~(including both code tasks and natural language processing tasks) and four LLMs (e.g., LLaMA and GPT4) demonstrated that existing fault detection methods cannot perform well on LLMs (e.g., seven out of eight methods perform worse than random selection on LLaMA). To enhance existing fault detection methods, we propose MuCS, a prompt Mutation-based prediction Confidence Smoothing method for LLMs. Concretely, we mutate the prompts and compute the average prediction confidence of all mutants as the input of fault detection methods. The results show that our proposed solution significantly enhances existing methods with the improvement of test relative coverage by up to 97.64%.

Click here to read this post out
ID: 819719; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: