×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14441v1 Announce Type: new
Abstract: In the pursuit of environmental sustainability, the aviation industry faces the challenge of minimizing its ecological footprint. Among the key solutions is contrail avoidance, targeting the linear ice-crystal clouds produced by aircraft exhaust. These contrails exacerbate global warming by trapping atmospheric heat, necessitating precise segmentation and comprehensive analysis of contrail images to gauge their environmental impact. However, this segmentation task is complex due to the varying appearances of contrails under different atmospheric conditions and potential misalignment issues in predictive modeling. This paper presents an innovative deep-learning approach utilizing the efficient net-b4 encoder for feature extraction, seamlessly integrating misalignment correction, soft labeling, and pseudo-labeling techniques to enhance the accuracy and efficiency of contrail detection in satellite imagery. The proposed methodology aims to redefine contrail image analysis and contribute to the objectives of sustainable aviation by providing a robust framework for precise contrail detection and analysis in satellite imagery, thus aiding in the mitigation of aviation's environmental impact.

Click here to read this post out
ID: 819724; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: