×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14729v1 Announce Type: new
Abstract: This paper addresses the challenge of incentivizing energy-constrained, non-cooperative user equipment (UE) to serve as cooperative relays. We consider a source UE with a non-line-of-sight channel to an access point (AP), where direct communication may be infeasible or may necessitate a substantial transmit power. Other UEs in the vicinity are viewed as relay candidates, and our aim is to enable energy-efficient connectivity for the source, while accounting for the self-interested behavior and private channel state information of these candidates, by allowing the source to "pay" the candidates via wireless power transfer (WPT). We propose a cooperation-inducing protocol, inspired by Myerson auction theory, which ensures that candidates truthfully report power requirements while minimizing the expected power used by the source. Through rigorous analysis, we establish the regularity of valuations for lognormal fading channels, which allows for the efficient determination of the optimal source transmit power. Extensive simulation experiments, employing real-world communication and WPT parameters, validate our theoretical framework. Our results demonstrate a 91% reduction in outage probability with as few as 4 relay candidates, compared to the non-cooperative scenario, and as much as 48% source power savings compared to a baseline approach, highlighting the efficacy of our proposed methodology.

Click here to read this post out
ID: 819849; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 12
CC:
No creative common's license
Comments: