×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14769v1 Announce Type: new
Abstract: Embedded systems continue to rapidly proliferate in diverse fields, including medical devices, autonomous vehicles, and more generally, the Internet of Things (IoT). Many embedded systems require application-specific hardware components to meet precise timing requirements within limited resource (area and energy) constraints. High-level synthesis (HLS) is an increasingly popular approach for improving the productivity of designing hardware and reducing the time/cost by using high-level languages to specify computational functionality and automatically generate hardware implementations. However, current HLS methods provide limited or no support to incorporate or utilize precise timing specifications within the synthesis and optimization process. In this paper, we present a hybrid high-level synthesis (H-HLS) framework that integrates state-based high-level synthesis (SB-HLS) with performance-driven high-level synthesis (PD-HLS) methods to enable the design and optimization of application-specific embedded systems in which timing information is explicitly and precisely defined in state-based system models. We demonstrate the results achieved by this H-HLS approach using case studies including a wearable pregnancy monitoring device, an ECG-based biometric authentication system, and a synthetic system, and compare the design space exploration results using two PD-HLS tools to show how H-HLS can provide low energy and area under timing constraints.

Click here to read this post out
ID: 819870; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 11
CC:
No creative common's license
Comments: