×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.15197v1 Announce Type: new
Abstract: The realization of data-driven AI-native architecture envisioned for 6G and beyond networks can eventually lead to multiple machine learning (ML) workloads distributed at the network edges driving downstream tasks like secondary carrier prediction, positioning, channel prediction etc. The independent life-cycle management of these edge-distributed independent multiple workloads sharing a resource-constrained compute node e.g., base station (BS) is a challenge that will scale with denser deployments. This study explores the effectiveness of multi-task learning (MTL) approaches in facilitating a general-purpose AI native Radio Access Network (RAN). The investigation focuses on four RAN tasks: (i) secondary carrier prediction, (ii) user location prediction, (iii) indoor link classification, and (iv) line-of-sight link classification. We validate the performance using realistic simulations considering multi-faceted design aspects of MTL including model architecture, loss and gradient balancing strategies, distributed learning topology, data sparsity and task groupings. The quantification and insights from simulations reveal that for the four RAN tasks considered (i) adoption of customized gate control-based expert architecture with uncertainty-based weighting makes MTL perform either best among all or at par with single task learning (STL) (ii) LoS classification task in MTL setting helps other tasks but its own performance is degraded (iii) for sparse training data, training a single global MTL model is helpful but MTL performance is on par with STL (iv) optimal set of group pairing exists for each task and (v) partial federation is much better than full model federation in MTL setting.

Click here to read this post out
ID: 820069; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: