×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.15198v1 Announce Type: new
Abstract: With the growth of model sizes and scale of their deployment, their sheer size burdens the infrastructure requiring more network and more storage to accommodate these. While there is a vast literature about reducing model sizes, we investigate a more traditional type of compression -- one that compresses the model to a smaller form and is coupled with a decompression algorithm that returns it to its original size -- namely lossless compression. Somewhat surprisingly, we show that such lossless compression can gain significant network and storage reduction on popular models, at times reducing over $50\%$ of the model size. We investigate the source of model compressibility, introduce compression variants tailored for models and categorize models to compressibility groups. We also introduce a tunable lossy compression technique that can further reduce size even on the less compressible models with little to no effect on the model accuracy. We estimate that these methods could save over an ExaByte per month of network traffic downloaded from a large model hub like HuggingFace.

Click here to read this post out
ID: 820070; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: