×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.15211v1 Announce Type: new
Abstract: Motivated by an imperative to reduce the carbon emissions of cloud data centers, this paper studies the online carbon-aware resource scaling problem with unknown job lengths (OCSU) and applies it to carbon-aware resource scaling for executing computing workloads. The task is to dynamically scale resources (e.g., the number of servers) assigned to a job of unknown length such that it is completed before a deadline, with the objective of reducing the carbon emissions of executing the workload. The total carbon emissions of executing a job originate from the emissions of running the job and excess carbon emitted while switching between different scales (e.g., due to checkpoint and resume). Prior work on carbon-aware resource scaling has assumed accurate job length information, while other approaches have ignored switching losses and require carbon intensity forecasts. These assumptions prohibit the practical deployment of prior work for online carbon-aware execution of scalable computing workload. We propose LACS, a theoretically robust learning-augmented algorithm that solves OCSU. To achieve improved practical average-case performance, LACS integrates machine-learned predictions of job length. To achieve solid theoretical performance, LACS extends the recent theoretical advances on online conversion with switching costs to handle a scenario where the job length is unknown. Our experimental evaluations demonstrate that, on average, the carbon footprint of LACS lies within 1.2% of the online baseline that assumes perfect job length information and within 16% of the offline baseline that, in addition to the job length, also requires accurate carbon intensity forecasts. Furthermore, LACS achieves a 32% reduction in carbon footprint compared to the deadline-aware carbon-agnostic execution of the job.

Click here to read this post out
ID: 820078; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: