×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14799v1 Announce Type: cross
Abstract: The stability--robustness--resilience--adaptiveness continuum in neuronal processing follows a hierarchical structure that explains interactions and information processing among the different time scales. Interestingly, using "canonical" neuronal computational circuits, such as Homeostatic Activity Regulation, Winner-Take-All, and Hebbian Temporal Correlation Learning, one can extend the behaviour spectrum towards antifragility. Cast already in both probability theory and dynamical systems, antifragility can explain and define the interesting interplay among neural circuits, found, for instance, in sensorimotor control in the face of uncertainty and volatility. This perspective proposes a new framework to analyse and describe closed-loop neuronal processing using principles of antifragility, targeting sensorimotor control. Our objective is two-fold. First, we introduce antifragile control as a conceptual framework to quantify closed-loop neuronal network behaviours that gain from uncertainty and volatility. Second, we introduce neuronal network design principles, opening the path to neuromorphic implementations and transfer to technical systems.

Click here to read this post out
ID: 820132; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 6
CC:
No creative common's license
Comments: