×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2306.11246v2 Announce Type: replace
Abstract: We argue that inventory management presents unique opportunities for reliably applying and evaluating deep reinforcement learning (DRL). Toward reliable application, we emphasize and test two techniques. The first is Hindsight Differentiable Policy Optimization (HDPO), which performs stochastic gradient descent to optimize policy performance while avoiding the need to repeatedly deploy randomized policies in the environment-as is common with generic policy gradient methods. Our second technique involves aligning policy (neural) network architectures with the structure of the inventory network. Specifically, we focus on a network with a single warehouse that consolidates inventory from external suppliers, holds it, and then distributes it to many stores as needed. In this setting, we introduce the symmetry-aware policy network architecture. We motivate this architecture by establishing an asymptotic performance guarantee and empirically demonstrate its ability to reduce the amount of data needed to uncover strong policies. Both techniques exploit structures inherent in inventory management problems, moving beyond generic DRL algorithms. Toward rigorous evaluation, we create and share new benchmark problems, divided into two categories. One type focuses on problems with hidden structures that allow us to compute or bound the cost of the true optimal policy. Across four problems of this type, we find HDPO consistently attains near-optimal performance, handling up to 60-dimensional raw state vectors effectively. The other type of evaluation involves constructing a test problem using real time series data from a large retailer, where the optimum is poorly understood. Here, we find HDPO methods meaningfully outperform a variety of generalized newsvendor heuristics. Our code can be found at github.com/MatiasAlvo/Neural_inventory_control.

Click here to read this post out
ID: 820194; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: