×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2309.02877v2 Announce Type: replace
Abstract: The Nystr\"om method offers an effective way to obtain low-rank approximation of SPD matrices, and has been recently extended and analyzed to nonsymmetric matrices (leading to the generalized Nystr\"om method). It is a randomized, single-pass, streamable, cost-effective, and accurate alternative to the randomized SVD, and it facilitates the computation of several matrix low-rank factorizations.
In this paper, we take these advancements a step further by introducing a higher-order variant of Nystr\"om's methodology tailored to approximating low-rank tensors in the Tucker format: the multilinear Nystr\"om technique. We show that, by introducing appropriate small modifications in the formulation of the higher-order method, strong stability properties can be obtained. This algorithm retains the key attributes of the generalized Nystr\"om method, positioning it as a viable substitute for the randomized higher-order SVD algorithm.

Click here to read this post out
ID: 820203; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:31 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 10
CC:
No creative common's license
Comments: