×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.10824v2 Announce Type: replace
Abstract: With the success of deep neural networks (NNs) in a variety of domains, the computational and storage requirements for training and deploying large NNs have become a bottleneck for further improvements. Sparsification has consequently emerged as a leading approach to tackle these issues. In this work, we consider a simple yet effective approach to sparsification, based on the Bridge, or $L_p$ regularization during training. We introduce a novel weight decay scheme, which generalizes the standard $L_2$ weight decay to any $p$ norm. We show that this scheme is compatible with adaptive optimizers, and avoids the gradient divergence associated with $0

<1$ norms. We empirically demonstrate that it leads to highly sparse networks, while maintaining generalization performance comparable to standard $L_2$ regularization.

Click here to read this post out
ID: 820337; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: