×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14583v1 Announce Type: new
Abstract: Integration of various electricity generating technologies (such as natural gas, wind, nuclear, etc.) with storage systems (such as thermal, battery electric, hydrogen, etc.) has the potential to improve the economic competitiveness of modern energy systems. Driven by the need to efficiently assess the economic feasibility of various energy system configurations in early system concept development, this work outlines a versatile computational framework for assessing the net present value of various integrated storage technologies. The subsystems' fundamental dynamics are defined, with a particular emphasis on balancing critical physical and economic domains to enable optimal decision-making in the context of capacity and dispatch optimization. In its presented form, the framework formulates a linear, convex optimization problem that can be efficiently solved using a direct transcription approach in the open-source software DTQP. Three case studies are considered to demonstrate and validate the capabilities of the framework, highlighting its value and computational efficiency in facilitating economic assessment of various configurations of energy systems. In particular, natural gas with thermal storage and carbon capture, wind energy with battery storage, and nuclear with hydrogen are demonstrated.

Click here to read this post out
ID: 820434; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: