×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.06712v4 Announce Type: replace
Abstract: Pathological image analysis is a crucial field in computer vision. Due to the annotation scarcity in the pathological field, pre-training with self-supervised learning (SSL) is widely applied to learn on unlabeled images. However, the current SSL-based pathological pre-training: (1) does not explicitly explore the essential focuses of the pathological field, and (2) does not effectively bridge with and thus take advantage of the knowledge from natural images. To explicitly address them, we propose our large-scale PuzzleTuning framework, containing the following innovations. Firstly, we define three task focuses that can effectively bridge knowledge of pathological and natural domain: appearance consistency, spatial consistency, and restoration understanding. Secondly, we devise a novel multiple puzzle restoring task, which explicitly pre-trains the model regarding these focuses. Thirdly, we introduce an explicit prompt-tuning process to incrementally integrate the domain-specific knowledge. It builds a bridge to align the large domain gap between natural and pathological images. Additionally, a curriculum-learning training strategy is designed to regulate task difficulty, making the model adaptive to the puzzle restoring complexity. Experimental results show that our PuzzleTuning framework outperforms the previous state-of-the-art methods in various downstream tasks on multiple datasets. The code, demo, and pre-trained weights are available at https://github.com/sagizty/PuzzleTuning.

Click here to read this post out
ID: 820501; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 9
CC:
No creative common's license
Comments: