×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2311.07986v2 Announce Type: replace-cross
Abstract: Sensing and edge artificial intelligence (AI) are two key features of the sixth-generation (6G) mobile networks. Their natural integration, termed Integrated sensing and edge AI (ISEA), is envisioned to automate wide-ranging Internet-of-Tings (IoT) applications. To achieve a high sensing accuracy, multi-view features are uploaded to an edge server for aggregation and inference using an AI model. The view aggregation is realized efficiently using over-the-air computing (AirComp), which also aggregates channels to suppress channel noise. At its nascent stage, ISEA still lacks a characterization of the fundamental performance gains from view-and-channel aggregation, which motivates this work. Our framework leverages a well-established distribution model of multi-view sensing data where the classic Gaussian-mixture model is modified by adding sub-spaces matrices to represent individual sensor observation perspectives. Based on the model, we study the End-to-End sensing (inference) uncertainty, a popular measure of inference accuracy, of the said ISEA system by a novel approach involving designing a scaling-tight uncertainty surrogate function, global discriminant gain, distribution of receive Signal-to-Noise Ratio (SNR), and channel induced discriminant loss. We prove that the E2E sensing uncertainty diminishes at an exponential rate as the number of views/sensors grows, where the rate is proportional to global discriminant gain. Given channel distortion, we further show that the exponential scaling remains with a reduced decay rate related to the channel induced discriminant loss. Furthermore, we benchmark AirComp against equally fast, traditional analog orthogonal access, which reveals a sensing-accuracy crossing point between the schemes, leading to the proposal of adaptive access-mode switching. Last, the insights from our framework are validated by experiments using real-world dataset.

Click here to read this post out
ID: 820517; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: