×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.09379v1 Announce Type: cross
Abstract: The standard approach to test for deviations from General Relativity on cosmological scales is to combine measurements of the growth rate of structure with gravitational lensing. In this study, we show that this method suffers from an important limitation with regard to these two probes: models of dark matter with additional interactions can lead to the very same observational signatures found in modified gravity (and viceversa). Using synthetic data of redshift-space distortions, weak lensing, and cosmic microwave background, we demonstrate that this degeneracy is inevitable between modifications of gravity and a dark fifth force. We then show that the coming generation of surveys, in particular the Square Kilometer Array, will allow us to break the degeneracy between such models through measurements of gravitational redshift. Performing a Markov Chain Monte Carlo analysis of the synthetic data set, we quantify the extent to which gravitational redshift can distinguish between two representative classes of models, Generalized Brans-Dicke (modified gravity) and Coupled Quintessence (fifth force).

Click here to read this post out
ID: 820544; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 7
CC:
No creative common's license
Comments: