×
Well done. You've clicked the tower. This would actually achieve something if you had logged in first. Use the key for that. The name takes you home. This is where all the applicables sit. And you can't apply any changes to my site unless you are logged in.

Our policy is best summarized as "we don't care about _you_, we care about _them_", no emails, so no forgetting your password. You have no rights. It's like you don't even exist. If you publish material, I reserve the right to remove it, or use it myself.

Don't impersonate. Don't name someone involuntarily. You can lose everything if you cross the line, and no, I won't cancel your automatic payments first, so you'll have to do it the hard way. See how serious this sounds? That's how serious you're meant to take these.

×
Register


Required. 150 characters or fewer. Letters, digits and @/./+/-/_ only.
  • Your password can’t be too similar to your other personal information.
  • Your password must contain at least 8 characters.
  • Your password can’t be a commonly used password.
  • Your password can’t be entirely numeric.

Enter the same password as before, for verification.
Login

Grow A Dic
Define A Word
Make Space
Set Task
Mark Post
Apply Votestyle
Create Votes
(From: saved spaces)
Exclude Votes
Apply Dic
Exclude Dic

Click here to flash read.

arXiv:2404.14782v1 Announce Type: cross
Abstract: The gravitational wave signals of black hole-neutron star (BHNS) binary systems have now been detected, and future detections might be accompanied by electromagnetic counterparts. BHNS mergers involve much of the same physics as binary neutron star mergers: strong gravity, nuclear density matter, neutrino radiation, and magnetic turbulence. They also share with binary neutron star systems the potential for bright electromagnetic signals, especially gamma ray bursts and kilonovae, and the potential to be significant sources of r-process elements. However, BHNS binaries are more asymmetric, and their mergers produce different amounts and arrangements of the various post-merger material components (e.g. disk and dynamical ejecta), together with a more massive black hole; these differences can have interesting consequences. In this chapter, we review the modeling of BHNS mergers and post-merger evolution in numerical relativistic hydrodynamics and magnetohydrodynamics. We attempt to give readers a broad understanding of the answers to the following questions. What are the main considerations that determine the merger outcome? What input physics must (or should) go into a BHNS simulation? What have the most advanced simulations to date learned?

Click here to read this post out
ID: 820549; Unique Viewers: 0
Unique Voters: 0
Total Votes: 0
Votes:
Latest Change: April 24, 2024, 7:32 a.m. Changes:
Dictionaries:
Words:
Spaces:
Views: 8
CC:
No creative common's license
Comments: